Emulsiones aceite/agua, características principales y comportamientos

Autores/as

  • Julio Moreno Universidad del Zulia
  • Cateryna Aiello-Mazzarri Universidad del Zulia
  • Richard Márquez Universidad del Zulia

Palabras clave:

Comportamiento de la emulsión, tamaño de la gota, inversión de fase, reología de emulsiones, fluidos no newtonianos, caída de presión

Resumen

Esta revisión presenta los principales factores de influencia en el comportamiento de emulsiones aceite/agua; entre los cuales, los más importantes son: la temperatura, el porcentaje de agua y la concentración de especies surfactantes; debido a los cambios producidos en las propiedades fisicoquímicas y la morfología de las emulsiones. Los fenómenos de agregación y solvatación cambian las características de las emulsiones debido a los diferentes modos de interacción entre la fase dispersa y la continua. Algunas ecuaciones para corregir la viscosidad de crudos y otras para reproducir la viscosidad de una mezcla son presentadas aquí, resaltando su aplicabilidad y su rango de uso. El efecto piezoviscoso es una herramienta para estimar viscosidad de emulsiones a altas presiones, a partir de datos a presión atmosférica. Una explicación detallada del punto de inversión de fase, los cambios en la morfología y su influencia sobre las propiedades de las emulsiones es presentado aquí. El mecanismo de ocurrencia del deslizamiento en la pared y como sus componentes y la química superficial influencian su ocurrencia en las emulsiones es explicado. El Comportamiento central de emulsiones a través de tuberías y lechos porosos haciendo énfasis en la fase dispersa es descrito en esta revisión, junto con, de acuerdo con la literatura citada, algunas de las mejores ecuaciones para la estimación de la caída de presión en el flujo de emulsiones.

 

Descargas

Los datos de descarga aún no están disponibles.

Referencias

Benayoune M., Khezzar L., Al-Rumhy M. Viscosity of water in oil emulsions. Petroleum Science and Technology vol 16 (8-7), (1998) 767-784.

Baled O., Gamwo I., Enick R., McHugh M. Viscosity models for pure hydrocarbons at extreme conditions: A review and comparative study. Fuel vol 218, (2018) 89–111.

Johnsen E., Rønningsen H. Viscosity of ‘live’ water-in-crude-oil emulsions: experimental work and validation of correlations. Journal of Petroleum Science and Engineering vol 38, (2003) 23– 36.

Pajouhandeh A., Kavousi A., Schaffie A., Ranjbar M. Towards a Mechanistic Understanding of Rheological Behaviour of Water-in-Oil Emulsion: Roles of nanoparticles, water volume fraction and aging time. South African Journal of Chemistry vol 69, (2016) 113-123.

Abd R., Nour A., Sulaiman A. Kinetic stability and rheology of water-in-crude oil emulsion stabilized by cocamide at different water volume fractions. International Journal of Chemical Engineering and Application vol 5 (2), (2014) 204-209.

Sandoval L., Cañas W., Martínez R. Comportamiento reológico de emulsiones agua en aceite para aceites vivos pesados y extra-pesados: evaluación experimental. Ciencia, Tecnología y Futuro, vol 5 (4), (2014) 5-24.

Sefton, E., Sinton D. Evaluation of selected viscosity prediction models for water in bitumen emulsions. Journal of Petroleum Science and Engineering vol 72, (2010) 128–133.

Haj-shafiei S., Ghosh S., Rousseau D. Kinetic stability and rheology of wax-stabilized waterin-oil emulsions at different water cuts. Journal of Colloid and Interface Science vol 41, (2013) 11–20.

Marcia C., Miranda L., Carvalho A., Miranda D. Viscosity of water-in-oil emulsions from

different API gravity behavior crude-oils. Energy & Fuels, vol 32 (3), (2018) 2749-2759.

Braus C. Isothermals, isopiestics and Isometrics relative to Viscosity. The American journal of science vol 45 (266), (1893) 87-96.

Mehrotra A., Svrcek W. Viscositv of Compressed Athabasca Bitumen. The Canadian journal of chemical engineering vol 64, (1986) 844-847.

Martín-Alfonso M., Martínez-Boza F., Partal P., Gallegos C. Influence of pressure and temperature on the flow behavior of heavy fuel oils. Rheological Acta vol 45, (2006) 357–365.

Martín-Alfonso M., Martínez-Boza F., Navarro F., Fernández M., Gallegos C. Pressure–temperature-viscosity relationship for heavy petroleum fractions. Fuel vol 86, (2007) 227-233.

Chaudemanche C., Henaut I., Argillier J. Combined effect of pressure and temperature on rheological properties of water-in-crude oil emulsions. Applied Rheology vol 19 (6), (2009) 62210.

Khan M. Rheological properties of heavy oils and heavy oil emulsions. Energy sources vol 18 (4), (1996) 385-391.

Dan D., Jing G. Apparent viscosity prediction of non-Newtonian water-in-crude oil emulsions. Journal of Petroleum Science and Engineering vol 53, (2006) 113–122.

Zhang J., Yuan H., Zhao J., Mei N. Viscosity estimation and component identification for an oil-water emulsion with the inversion method, Applied Thermal Engineering vol 111, (2017) 759–767.

Shi S., Wang Y., Liu Y., Wang L. A new method for calculating the viscosity of W/O and O/W emulsion, Journal of Petroleum Science and Engineering vol 171, (2018) 928-937.

Farah M., Oliveira R., Caldas J., Rajagopal K. Viscosity of water-in-oil emulsions: Variation with temperature and water volume fraction, Journal of Petroleum Science and Engineering vol 48,(2005) 169– 184.

Rahman M., Islam M., Ahmed S., Rahman M., Hossain M. (2016). PVT Properties of Heavy Oil – A Critical Review. Paper presented in: International Conference on Petroleum Engineering, December 31. Dhaka, Bangladesh.

Plasencia J., Pettersen B., Nydal O. Pipe flow of water-in-crude oil emulsions: Effective viscosity, inversion point and droplet size distribution, Journal of Petroleum Science and Engineering vol 101, (2013) 35–43.

Alqahtani N., AlQuraishi A., Al-Baadani W. New correlations for prediction of saturated and undersaturated oil viscosity of Arabian oil fields, Journal of Petroleum Exploration and Production Technology vol 8, (2018) 205–215.

Mukhaimer A., Sarkhi A., El Nakla M., Ahmed H., Al-Hadhrami L. Pressure Drop and Flow Pattern of Oil-Water Flow for Low Viscosity Oils: Role of Mixture Viscosity, International Journal of Multiphase Flow vol 73 (2015) 90-96.

Anisa I., Nour A. Affect of Viscosity and Droplet Diameter on water-in-oil (w/o) Emulsions: An Experimental Study, World Academy of Science, Engineering and Technology vol 38, (2010) 691-694.

Basha M., Shaahid S., Al-Hems L. (2017). Effect of Water Cut on Pressure Drop of Oil (D130)–Water Flow in 4’’Horizontal Pipe. Presentation given in: 3rd International Conference on Mechanical and Aeronautical Engineering, 13–16 December. Dubai, UAE.

Ganat T., Ridha S., Hrairi M., Arisa J., Gholami R. Experimental investigation of high-viscosity oil–water flow in vertical pipes: flow patterns and pressure gradient, Journal of Petroleum Exploration and Production Technology vol 9, (2019) 2911–2918.

Kamel A., Alomair O., Elsharkawy A. Measurements and predictions of Middle Eastern heavy crude oil viscosity using compositional data, Journal of Petroleum Science and Engineering vol 137, (2019) 990-1004.

Elsharkawy A., Alikhan A. Models for predicting the viscosity of Middle East crude oils,Fuel vol 78, (1999) 891–903.

Langevin D., Poteau S., Hénaut I., Argillier J. Crude Oil Emulsion Properties and their Application to Heavy Oil Transportation, Oil & Gas Science and Technology – Rev. IFP vol 59 (5), (2004) 511-521.

Soto-Cortes G., Pereyra E., Sarica C., Rivera-Trejo F., Torres C. Effects of high oil viscosity on oil-gas upward flow behavior in deviated pipes, Experimental Thermal and Fluid Science vol 109, (2019) 109896.

Hajirezaie S., Pajouhandeh A., Hemmati-Sarapardeh A., Pournik M., Dabir B. Development

of a robust model for prediction of under-saturated reservoir oil viscosity, Journal of Molecular Liquids vol 229, (2017) 89–97.

Li Y., Gao H., Wei B., Chen Y., Li D., Luo Q. Viscosity profile prediction of a heavy crude oil during lifting in two deep artesian wells, Chinese Journal of Chemical Engineering vol 25 (7), (2017) 976-982.

Malta J., Calabrese C., Nguyen T., Trusler J. Measurements and modelling of the viscosity of six synthetic crude oil mixtures, Fluid Phase Equilibria vol 505, (2020) 112343.

Pertuz M., Pino G., León J., Pérez C., Díaz C. Nuevos modelos para el cálculo de la viscosidad de crudos extrapesados en campos colombiano, CT&F-Ciencia, Tecnología y Futuro vol 5 (4),(2014) 23-34.

Azodi M., Solaimany A. An experimental study on factors affecting the heavy crude oil in water emulsions viscosity, Journal of Petroleum Science and Engineering vol 106, (2013) 1–8.

Ling N., Haber A., May E., Fridjonsson E., Johns M. NMR studies of emulsion microstructure approaching the phaseinversion point, Colloids and Surfaces A: Physicochemical and Engineering Aspects vol 462, (2014) 244–251.

Galindo J., Sadtler V., Choplin L., Salager J. Viscous oil emulsification by catastrophic phase inversion: influence of oil viscosity and process conditions, Industrial & Engineering Chemistry Research vol 50, (2011) 5575–5583.

Rondón M., Sadtler V., Marchal P., Choplin L., Salager J. Emulsion catastrophic inversion from abnormal to normal morphology. 7. Emulsion evolution produced by continuous stirring to generate a very high internal phase ratio emulsion, Industrial & Engineering Chemistry Research, vol 47 (7), (2008) 2314-2319.

Bouchama F., Van Aken G., Autin A., Koper G. On the mechanism of catastrophic phase inversion in emulsions, Colloids and Surfaces A: Physicochemical and Engineering Aspects vol 231, (2003) 11–17.

Rondón M., Sadtler G., Choplin L., Salager J. Emulsion catastrophic inversion from abnormal to normal morphology. 5. Effect of the water-to-oil ratio and surfactant concentration on the inversion Produced by Continuous Stirring, Industrial & Engineering Chemistry Research vol 45, (2006) 3074-3080.

Rondón M., Madariaga L., Sadtler V., Choplin L., Márquez L., Salager J. Emulsion catastrophic inversion from abnormal to normal morphology. 6. Effect of the phase viscosity on the inversion produced by continuous stirring, Industrial & Engineering Chemistry Research vol 46, (2007) 3595-3601.

Mira I., Zambrano N., Tyrode E., Márquez L., Peña A., Pizzino A., Salager J. Emulsion catastrophic inversion from abnormal to normal morphology. 2. Effect of the stirring intensity on the dynamic inversion frontier, Industrial & Engineering Chemistry Research vol 42, (2003) 57-61.

Zambrano N., Tyrode E., Mira I., Márquez L., Rodríguez M., Salager J. Emulsion catastrophic inversión from abnormal to normal Morphology. 1. Effect of the water-to-oil ratio rate of change on the dynamic inversion frontier, Industrial & Engineering Chemistry Research vol 4, (2003) 50-56.

Al-Roomi J., George R., Elgibaly A., Elkamel A. Use of a novel surfactant for improving the transportability/transportation of heavy/viscous crude oils, Journal of Petroleum Science and Engineering vol 42, (2004) 235–243.

Wei W., Pengyu W., Kai L., Jimiao D., Kunyi W., Jing G. Prediction of the apparent viscosity of non-Newtonian water-in-crude oil emulsions, Petroleum Exploration and Development, vol 40 (1), (2013) 30–133.

Barrabino A., Keleşoğlu S., Humborstad G., Simon S., Sjöblom S. Phase inversion in emulsions studied by low field NMR, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol 443, (2014) 368-376.

De Oliveira S., Kashefi K., Mengotti R., Tavares F., Pinto J., Nele M. Emulsion phase inversion of model and crude oil systems detected by near-Infrared spectroscopy and principal component analysis, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol 538, (2018) 565-573.

Do Carmo W., Lenzi M., Lenzi E., Fortuny M., Santos A. A fractional model to relative viscosity prediction of water-in-crude oil emulsions, Journal of Petroleum Science and Engineering vol 172, (2019) 493-501.

Neto D., Sad C., Silva M., Santos F., Pereira L., Corona R., Silva S., Bassane J., Castro E., Filgueiras R., Romão W., Lacerda V. Rheological study of the behavior of water-in-oil emulsions of heavy oils, Journal of Petroleum Science and Engineeringvol 173, (2019) 1323-1331.

Mc. Cain W. Reservoir-fluid property correlations-state of the art. SPE Reservoir Engineering vol 6 (2), (1991) 266-272.

Zhang j., Yuan H., Li Y., Zhao J., Si H., Mei N. Estimation of viscosity and inversion point for oil-water mixture, Energy Procedia vol 153, (2018) 180-185.

Ren Y., Jiang G., Zhang Z., An Y., Liu F. Phase inversion pathways of emulsions stabilized by ethoxylatedalkylamine surfactants, Colloids and Surfaces A: Physicochemical and Engineering Aspects vol 452, (2014) 95–102.

Vlachou M., Konstantinos A., Kostoglou M., Karapantsios T. Droplet size distributions derived from evolution of oil fraction during phase separation of oil-in-water emulsions tracked by electrical impedance spectroscopy, Colloids and Surfaces A: Physicochemical and Engineering Aspects vol 586, (2020) 124292.

Nangarajan N., Honarpour M., Sampath K.(200&) Reservoir fluids sampling and characterization-Key to efficient reservoir management. Paper presented in: The International Petroleum Exhibition and Conference, 5-8 November. Abu Dhabi, UAE.

Zhang R., Yang Y., Tu R., J H., Wang J., Zhou J., Chen D. Emulsion phase inversion from oilin-water (1) to water-in-oil tooil-in-water (2) induced by in situ surface activation of CaCO3 nanoparticles via adsorption of sodium stearate, Colloids and Surfaces A: Physicochemical and Engineering Aspects vol 477 (2015), 55–62.

Yang F., Li C., Xu C., Song M. Studies on the normal-to-abnormal emulsion inversion of waxy crude oil-in-water emulsion induced by continuous stirring, Journal of Petroleum Science and Engineering vol 81, (2012) 64–69.

Al-Yaari M., Hussein I., Al-Sarkhi A. Pressure drop reduction of stable water-in-oil emulsions using organoclays, Applied Clay Science vol 95, (2014) 303-309.

Al-Yaari M., Al-Sarkhi A., Hussein I., Chang F., Abbad M. Flow characteristics of surfactant stabilized water-in-oil emulsions, chemical engineering research and design vol 92, (2014) 405–412.

Santos R., Brinceño M., Loh W. Laminar pipeline flow of heavy oil–in–water emulsions produced by continuous in-line emulsification, Journal of Petroleum Science and Engineering vol 156, (2017) 827–834.

Guo J., Yang Y., Zhang D., Wu W., Yang Z., He L. A general model for predicting apparent viscosity of crude oil or emulsion in laminar pipeline at high pressures, Journal of Petroleum Science and Engineering vol 160, (2018) 12-23.

Pal R. Pipeline Flow of Unstable and Surfactant- stabilized Emulsions, American Institute of Chemical Engineers vol 39 (11), (1993) 1754-1764.

Omer A., Pal R. Pipeline Flow Behavior of water-in-oil Emulsions with and without a Polymeric Additive, Chemical Engineering Technology vol 33 (6), (2010) 983–992.

Masalova I., Malkin A., Slatter P., Wilson K. The rheological characterization and pipeline flow of high concentration water-in-oil emulsions, Journal of Non-Newtonian Fluid Mechanics vol 112, (2003) 101–114.

Zakin J., Pinaire R., Borgmeyer M. Transport of oils as oil-in-water emulsions, Journal of Fluids Engineering vol 101 (1), (1979) 100-104.

Metzner A., Reed J. Flow of Non-Newtonian fluids-correlation of the laminar, transition, and turbulent-flow regions, American Institute of Chemical Engineers vol 1 (4), (1955) 434-440.

Zhang J. Xu J. Rheological Behaviour of oil and water emulsions and their flow Characterization in Horizontal Pipes, The Canadian Journal of Chemical Engineering vol 94, (2016) 324-331.

Zhang J., Chen D., Yan D., Yang X. (1991) Pipelining of Heavy Crude Oil as Oil-in-Water Emulsions. Paper presented in: Production Operations Symposium 7-9 April. Oklahoma City, UU.EE.

Dodge D., Metzner A., Turbulent flow of mon-Newtonian systems, American Institute of Chemical Engineers vol 5 (2), (1959) 189-204.

Wilson K., Thomas A. A New Analysis of the Turbulent Flow of Non-Newtonian Fluids, The Canadian Journal Of Chemical Engineering vol 63, (1985) 539-545

.Pinho F., Whitelaw J. Flow Of Non-Newtonian Fluids in a Pipe, Journal of Non-Newtonian Fluid Mechanic vol 34, (1990) 129-144.

Lim J., Wong S., Law M., Samyudia Y., Dol S. A Review on the effects of emulsions on flow behaviors and common factors affecting the stability of emulsions, Journal of Applied Sciences vol 15 (2), (2015) 167-172.

Garcia E., Steffe E. Comparison of friction factor equations for non-Newtonian fluids in pipe flow, Journal of Food Process Engineering vol 9, (1987) 93-120.

Briceño M., Salager J., Bertrand J. Influence of dispersed phase content and viscosity on the mixing of concentrated oil-in-water emulsions in the transition flow regime, Chemical Engineering Research and Design vol 78 (8), (2001) 943-948.

Nädler M., Mewes D. Flow induced emulsification in the flow of two immiscible liquids in horizontal pipes, International Journal of Multiphase Flow vol 24 (1), (1997) 55-6.

Pal R., Bhattacharya S., Rhodes E. Flow Behaviour of Oil-In-Water Emulsions, The Canadian Journal of Chemical Engineering vol 64 (1), (1986) 3-10.

Paredes J., Shahidzadeh N., Bonn D. Wall slip and fluidity in emulsion flow, Physical Review E vol 92 (4), (2015) 042313.

Franco M., Gallegos C., Barnes H. On slip effects in steady-state flow measurements of oilin-water food emulsions, Journal of Food Engineering vol 36, (1998) 98-102.

Malkin A., Patlazhan S. Wall slip for complex liquids–phenomenon and its causes, Advances in Colloid and Interface Science vol 257, (2018) 42-57.

Barnes H. A review of the slip (wall depletion) of polymer solutions, emulsions and particle suspensions in viscometers: its cause, character, and cure, Journal of Non-Newtonian Fluid Mechanics vol 56 (3), (1995) 221-251.

Sanchez M., Valencia C., Franco J., Gallegos C. Wall slip phenomena in oil-in-water emulsions: effect of some structural parameters, Journal of Colloid and Interface Science vol 241, (2001) 226–232.

. Cloitre M., Bonnecaze R. A review on wall slip in high solid dispersions, Rehologica Acta vol 56, (2017) 283–305.

. Egger H., McGrath K. Estimating depletion layer thickness in colloidal systems: Correlation with oil-in-water emulsion composition, Colloids and Surfaces A: Physicochemical and Engineering Aspects vol 275 (2007), 107–113.

. Paredes J., Shahidzadeh N., Bonn D. Wall slip and fluidity in emulsion flow, Physical Review vol 92 (2015), 042313.

. Ahmad I., Issham I., Zoveidavianpoor M., Mohsin R., Piroozian A., Misnan M., Sariman M. Review of oil–water through pipes, Flow Measurement and Instrumentation vol 45 (2015), 357-374.

. Bécu L., Grondin P., Colin A., Manneville S. How does a concentrated emulsion flow? Yielding, local rheology, and wall slip, Colloids and Surfaces A: Physicochemical and Engineering Aspects vol 263, (2004) 146–152.

. Bower C., Gallegos C., Mackley M., Madiedo J. The rheological and microstructural characterization of the non-linear flow behavior of concentrated oil-in-water emulsions, Rheologica Acta vol 38, (1999) 145–159.

. Zhang X., Lorenceau E., Bourouina T., Basset P., Oerther T., Ferrari M., Rouyer F., Goyon J., Coussot P. Wall slip mechanisms in direct and inverse emulsions, Journal of Rheology vol 62, (2018) 1495-1513.

. Seth J., Cloitre M., Bonnecaze R. Influence of short-range forces on wall-slip in microgel pastes, Journal of Rheology vol 52, (2008) 1241-1268.

. Ren C., Sai L., Shaliza I., Wan Zurina J. Factors affect wall slip: particle size, concentration, and temperature, Applied Rehology vol 28, (2018) 15775.

. Habibi M., Dinkgreve M., Paredes J., Denn M., Bonn D. Normal stress measurement in foams and emulsions in the presence of slip, Journal of Non-Newtonian Fluid Mechanics vol 238, (2016) 33-43.

. Yilmazer Y., Kalyon D. Slip effects in capillary and parallel disk torsional flows of highly filled suspensions, Journal of Rheology vol 33 (8), (1989) 1197-1212.

. Abchiche H., Mellal M., Bensakhria A., Trari M. Comparative study of correction methods of wall slip effects for CMC solutions, Comptes Rendus Mecanique vol 343, (2015) 322–330.

. Różańska S., Różański J. Flow of emulsions stabilized by polymers through packed bed, Transport in Porous Media vol 128, (2019) 321–343.

. AI-Fariss T., Fakeeha A., AI-Odan M. Flow of oil emulsion through porous media, Journal of King Saud University –Engineering Sciences vol 6, (1994) 1-16.

. AI-Fariss., Inder L. Flow through porous media of a shear-thinning liquid with yield stress, The Canadian Journal of Chemical Engineering vol 65 (3) (1987) 391-405.

. McAuliffe C. Oil-in-water emulsions and their flow properties in porous media, Journal of Petroleum Technology vol 25 (6), (1973) 727-733.

. Błaszczyk M., Sęk J., Pacholski P., Przybysz L. The analysis of emulsion structure changes during flow through porous structure, Journal of Dispersion Science and Technology vol 38 (8), (2017) 1154–1161

. Perazzo A., Tomaiuolo G., Preziosi V., Guido S. Emulsions in porous media: From single droplet behavior to applications for oil recovery, Advances in Colloid and Interface Science vol 256, (2018) 305-325.

. Zinchenko A., Davis R. Emulsion fow through a packed bed with multiple drop breakup, Journal of Fluid Mechanics vol 725, (2013) 611-663.

. Cortis A., Ghezzehei T. On the transport of emulsions in porous media, Journal of Colloid and Interface Science vol 313, (2007) 1–4.

. Cobos S., Carvalho M., Alvarado V. Flow of oil–water emulsions through a constricted

capillary, International Journal of Multiphase Flow vol 35, (2009) 507–515.

. Moradi M., Kazempour M., French J., Alvarado V. Dynamic flow response of crude oil-inwater emulsion during flow through porous media, Fuel vol 135, (2014) 38–45.

. Chhabra R., Srinivas B. Non-Newtonian (purely viscous) fluid flow through packed beds: effect of particle shape, Powder Technology vol 67, (1991) 15-19.

. Ergun S. Fluid through packed beds, Chemical Engineer Progress vol 48 (2), (1953) 89-94.

. Chhabra R., Comiti J., Machač I. Flow of non-Newtonian fluids in fixed and ewtonian beds, Chemical Engineering Science vol 56, (2001) 1-27.

. Kembtowski Z., Michniewicz M. A new look at the laminar flow of power law fluids through granular beds, Rheologica Acta vol 18, (1979) 730–739.

. Kaur N., Singh R., Wanchoo R. Flow of ewtonian and non-newtonian fluids through packed beds: an experimental study, Transport in Porous Media vol 90, (2011) 655-671.

. Romero M., Carvalho M. Experiments and network model of flow of oil-water emulsion in porous media, Physical Review E 84, (2011) 046305.

. Zhou Y., Wang D., Wang Z., Cao R. The formation and viscoelasticity of pore-throat scale emulsion in porous media, Petroleum Exploration and Development vol 44 (1), (2017) 111–118

. Kokal S., Maini B., Woo R. Flow of emulsions in porous media, Advances in Chemistry vol 231, (1992) 219-262.

. Goodarzi F., Zendehboudi S. A comprehensive review on emulsions and emulsion stability in chemical and energy industries, The Canadian Journal of Chemical Engineering vol 97, (2019) 281–309.

. Rezaei N. Firoozabadi A. Macro-and microscale waterflooding performances of crudes whichform w/o emulsions upon mixing with brines, Energy & Fuels vol 28, (2014) 2092−2103.

. Zhou Y., Yin D., Chen W., Liu B., Zhang X. A comprehensive review of emulsion and its field application forenhanced oil recovery, Energy Science & Engineering vol 7, (2019) 1046–1058.

. McAuliffe C. Crude-oil-in-water emulsions to improve fluid flow in an oil reservoir, Journal of Petroleum Technology vol 25 (6), (1973) 721-726.

Descargas

Publicado

2021-01-01

Número

Sección

Artículos de investigación

Cómo citar

Emulsiones aceite/agua, características principales y comportamientos. (2021). Revista Tecnocientífica URU, 20, 51-80. https://ojs.uru.edu/index.php/tecnocientificauru/article/view/morenoaiellomarquezn20a21

Artículos similares

1-10 de 188

También puede Iniciar una búsqueda de similitud avanzada para este artículo.